
OpenWalker Project

TUM Institute for Cognitive Systems (ICS)

OpenWalker

Module Description: Forward Kinematics (FKM)

Florian Bergner, Emmanuel Dean, Rogelio Guadarrama-Olvera,
Simon Armleder, and Gordon Cheng

February 14, 2020

1 Module Description

FKM
Ext Lib

Static Parameters

URDF

Kinematic
Parameters

* Joints
* Links

static

*base link
*LF link
*RF link

strings

EE

FK_real

RBDL
KDL

Leg Poses
FKM

Ext Lib
URDF

Kinematic
Parameters

* Joints
* Links

static

*base link
*LF link
*RF link

strings

EE

FK_cmd

Static Parameters

RBDL
KDL

KINDR

Leg Poses

These are
numeric

deivatives
generated by

RRM

Figure 1.1: Forward Kinematics module: This module implements the forward kinematics for
the robot.

The Forward Kinematics module (FKM) computes the forward kinematics of the robot.
The OpenWalker framework employs two FKMs, one for computing the forward kinematics for
the real robot, and one for the commanded robot. The forward kinematics maps the joint posi-
tion space into the Cartesian space, i.e. for a given set of joint positions, the forward kinematics
computes the Carthesian position (linear position and angular position) of a given end-effector.
The forward kinematics of the real robot uses the robot’s joint sensor measurements (q, q̇, and
q̈) as input to compute the Carthesian positions of end-effectors of the real robot. Correspond-
ingly, the forward kinematics of the commanded robot uses the commanded joint positions
(qc, q̇c, and q̈c) to compute the Carthesian positions of end-effectors of the commanded robot.
The OpenWalker framework uses the real and commanded Carthesian end-effector positions
to compute offsets which the frameworks uses to compensate the error between where it com-
manded the end-effectors and where they actually are.

Since the rigid multi body system (MBS) of the robot is the same for the real and the com-
manded robot the OpenWalker framework needs to realize only one FKM, which is then im-

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

1

OpenWalker Project

plemented and connected once to the real joint positions and once to the commanded joint
positions.

The OpenWalker framework requires the Carthesian position, velocities, and accelerations
of three end-effectors, namely the left and right foot, and the center-of-mass (CoM) of the
whole robot, with respect to the world. The FKM implementations provide this information
to other modules of the OpenWalker project.

2 Module Connections

2.1 Inputs

Symbol Name Type Description

q ∈RDOF Real Robot Joint Positions JointPosition This vector contains the real joint positions of the robot.
The OpenWalker framework uses this module input to
compute the forward kinematics of the real robot.

q̇ ∈RDOF Real Robot Joint Velocities JointVelocity This vector contains the real joint velocities of the robot.
The OpenWalker framework uses this module input to
compute the forward kinematics of the real robot.

q̈ ∈RDOF Real Robot Joint Accelerations JointAcceleration This vector contains the real joint accelerations of the
robot. The OpenWalker framework uses this module in-
put to compute the forward kinematics of the real robot.

qc ∈RDOF Commanded Robot Joint Positions JointPosition This vector contains the currently commanded joint po-
sitions of the robot. The OpenWalker framework uses
this module input to compute the forward kinematics of
the commanded robot.

q̇c ∈RDOF Commanded Robot Joint Velocities JointVelocity This vector contains the currently commanded joint ve-
locities of the robot. The OpenWalker framework uses
this module input to compute the forward kinematics of
the commanded robot.

q̈c ∈RDOF Commanded Robot Joint Accelerations JointAcceleration This vector contains the currently commanded joint ac-
celerations of the robot. The OpenWalker framework
uses this module input to compute the forward kinemat-
ics of the commanded robot.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

2

OpenWalker Project

2.2 Outputs

FK of the Real Robot

Symbol Name Type Description

L
WT ∈R4×4 Left Foot Coordinate Frame HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the left foot coordinate frame L to the world coordinate frame
W.

R
WT ∈R4×4 Right Foot Coordinate Frame HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the right foot coordinate frame R to the world coordinate frame
W.

M
WT ∈R4×4 CoM Coordinate Frame HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the CoM coordinate frame M to the world coordinate frame W.

WẊL ∈R6 Left Foot Velocity CartesianVelocity This vector contains the linear and angular velocities of the left
foot L with respect to the world coordinate frame W.

WẊR ∈R6 Right Foot Velocity CartesianVelocity This vector contains the linear and angular velocities of the right
foot R with respect to the world coordinate frame W.

WẊM ∈R6 CoM Velocity CartesianVelocity This vector contains the linear and angular velocities of the CoM
with respect to the world coordinate frame W.

WẌL ∈R6 Left Foot Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the left
foot L with respect to the world coordinate frame W.

WẌR ∈R6 Right Foot Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the
right foot R with respect to the world coordinate frame W.

WẌM ∈R6 CoM Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the
CoM with respect to the world coordinate frame W.

FK of the Commanded Robot

Symbol Name Type Description
Lc
WT ∈R4×4 Left Commanded Foot Coordinate

Frame
HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the left commanded foot coordinate frame L to the world coor-
dinate frame W.

Rc
W T ∈R4×4 Right Commanded Foot Coordinate

Frame
HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the right commanded foot coordinate frame R to the world co-
ordinate frame W.

Mc
W T ∈R4×4 CoM Commanded Coordinate Frame HomogeneousTransformation This homogeneous transformation matrix transforms coordinates

in the CoM commanded coordinate frame M to the world coordi-
nate frame W.

WẊLc
∈R6 Left Commanded Foot Velocity CartesianVelocity This vector contains the linear and angular velocities of the left

commanded foot L with respect to the world coordinate frame W.

WẊRc
∈R6 Right Commanded Foot Velocity CartesianVelocity This vector contains the linear and angular velocities of the com-

manded right foot R with respect to the world coordinate frame W.

WẊMc
∈R6 CoM Commanded Velocity CartesianVelocity This vector contains the linear and angular velocities of the com-

manded CoM with respect to the world coordinate frame W.

WẌLc
∈R6 Left Commanded Foot Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the

commanded left foot L with respect to the world coordinate frame
W.

WẌRc
∈R6 Right Commanded Foot Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the

commanded right foot R with respect to the world coordinate
frame W.

WẌMc
∈R6 CoM Commanded Acceleration CartesianAcceleration This vector contains the linear and angular accelerations of the

commanded CoM with respect to the world coordinate frame W.

2.3 Inter-Connections

The inputs of the FKMs are connected to the outputs of the Real Robot Module (RRM)
which provides the joint positions, velocities, and accelerations of the real and the commanded
robot. The outputs of FKMs (real and commanded) are connected to modules that require
the Cartesian positions, velocities, and accelerations of the left/right foot and the CoM end-
effectors with respect to the world. The real FKM is connected to

• the Zero-Moment-Point Module (ZMPM),

• the Center-of-Mass Module (CoMM) for the real robot, and

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

3

OpenWalker Project

• the Foot Compliance Model Module (FCMM).

The commanded FKM is connected to

• the Center-of-Mass Module (CoMM) for the commanded robot, and

• the Foot Trajectory Generator Module (FTGM).

The ZMPM module uses L
WT, R

WT, M
WT, and WẊM in combination with information of the

foot FT sensors and the IMU to compute the linear position, and velocity, of the Zero-Moment-
Point (ZMP). The CoMMs (real and commanded) fuse M

WT and WẊM with IMU information in
a model based filter to estimate the Cartesian position and velocity of the CoM and the linear
position and velocity of the capture point (CP). The FCMM requires L

WT, R
WT, WẊL, and WẊR

compute the homogeneous transformation for the offset of the feet coordinate frames. The
FTGM requires Lc

WT and Rc
W T to compute the reference Cartesian positions, velocities, and accel-

erations of the feet.

2.4 Common Methods

This module uses kinematic parameters such as joint properties (location, type), and link
properties (location, length) to build up a rigid multi body system (MBS) that represents the
kinematic model of the robot. The MBS is a tree of links and joints where the joints connect
links. Relative spatial transformations between links and joints describe the spatial relation be-
tween parent and child links. Then the transformation of all coordinate frames within the MBS
can be computed with respect to a reference coordinate frame by traveling along the branches
of the tree and chaining up relative transformations between parent and child links. This re-
cursive method of computing the transformations of link coordinate frames with respect to a
reference coordinate frame has in contrast to the symbolic code generation method the ad-
vantage that existing models can be extended and more easily analyzed [1]. Furthermore, the
recursive method does not require the complex generation of code from symbolic expressions.

References

[1] Martin L. Felis, RBDL: An efficient rigid-body dynamics library using recursive algorithms,
Autonomous Robots 41 (2): 495–511, 2017.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 732287.

4

